3.470 \(\int \frac{x^3}{(d+e x) \sqrt{a d e+(c d^2+a e^2) x+c d e x^2}} \, dx\)

Optimal. Leaf size=271 \[ \frac{3 \left (a^2 e^4+2 a c d^2 e^2+5 c^2 d^4\right ) \tanh ^{-1}\left (\frac{a e^2+c d^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{8 c^{5/2} d^{5/2} e^{7/2}}-\frac{3 \left (a e^2+3 c d^2\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 c^2 d^2 e^3}-\frac{2 d^3 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e^3 (d+e x) \left (c d^2-a e^2\right )}+\frac{(d+e x) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 c d e^3} \]

[Out]

(-3*(3*c*d^2 + a*e^2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(4*c^2*d^2*e^3) - (2*d^3*Sqrt[a*d*e + (c*d^
2 + a*e^2)*x + c*d*e*x^2])/(e^3*(c*d^2 - a*e^2)*(d + e*x)) + ((d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e
*x^2])/(2*c*d*e^3) + (3*(5*c^2*d^4 + 2*a*c*d^2*e^2 + a^2*e^4)*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*S
qrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(8*c^(5/2)*d^(5/2)*e^(7/2))

________________________________________________________________________________________

Rubi [A]  time = 0.341119, antiderivative size = 298, normalized size of antiderivative = 1.1, number of steps used = 5, number of rules used = 5, integrand size = 40, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.125, Rules used = {849, 818, 779, 621, 206} \[ \frac{3 \left (a^2 e^4+2 a c d^2 e^2+5 c^2 d^4\right ) \tanh ^{-1}\left (\frac{a e^2+c d^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{8 c^{5/2} d^{5/2} e^{7/2}}-\frac{\left (\left (5 c d^2-3 a e^2\right ) \left (a e^2+3 c d^2\right )-2 c d e x \left (5 c d^2-a e^2\right )\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 c^2 d^2 e^3 \left (c d^2-a e^2\right )}-\frac{2 d x^2 \left (c d x \left (c d^2-a e^2\right )+a e \left (c d^2-a e^2\right )\right )}{e \left (c d^2-a e^2\right )^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}} \]

Antiderivative was successfully verified.

[In]

Int[x^3/((d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(-2*d*x^2*(a*e*(c*d^2 - a*e^2) + c*d*(c*d^2 - a*e^2)*x))/(e*(c*d^2 - a*e^2)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x +
 c*d*e*x^2]) - (((5*c*d^2 - 3*a*e^2)*(3*c*d^2 + a*e^2) - 2*c*d*e*(5*c*d^2 - a*e^2)*x)*Sqrt[a*d*e + (c*d^2 + a*
e^2)*x + c*d*e*x^2])/(4*c^2*d^2*e^3*(c*d^2 - a*e^2)) + (3*(5*c^2*d^4 + 2*a*c*d^2*e^2 + a^2*e^4)*ArcTanh[(c*d^2
 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(8*c^(5/2)*d^(
5/2)*e^(7/2))

Rule 849

Int[((x_)^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> Int[x^n*(a/d + (c*
x)/e)*(a + b*x + c*x^2)^(p - 1), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b
*d*e + a*e^2, 0] &&  !IntegerQ[p] && ( !IntegerQ[n] ||  !IntegerQ[2*p] || IGtQ[n, 2] || (GtQ[p, 0] && NeQ[n, 2
]))

Rule 818

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Si
mp[((d + e*x)^(m - 1)*(a + b*x + c*x^2)^(p + 1)*(2*a*c*(e*f + d*g) - b*(c*d*f + a*e*g) - (2*c^2*d*f + b^2*e*g
- c*(b*e*f + b*d*g + 2*a*e*g))*x))/(c*(p + 1)*(b^2 - 4*a*c)), x] - Dist[1/(c*(p + 1)*(b^2 - 4*a*c)), Int[(d +
e*x)^(m - 2)*(a + b*x + c*x^2)^(p + 1)*Simp[2*c^2*d^2*f*(2*p + 3) + b*e*g*(a*e*(m - 1) + b*d*(p + 2)) - c*(2*a
*e*(e*f*(m - 1) + d*g*m) + b*d*(d*g*(2*p + 3) - e*f*(m - 2*p - 4))) + e*(b^2*e*g*(m + p + 1) + 2*c^2*d*f*(m +
2*p + 2) - c*(2*a*e*g*m + b*(e*f + d*g)*(m + 2*p + 2)))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && Ne
Q[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && GtQ[m, 1] && ((EqQ[m, 2] && EqQ[p, -3] &&
RationalQ[a, b, c, d, e, f, g]) ||  !ILtQ[m + 2*p + 3, 0])

Rule 779

Int[((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[((b
*e*g*(p + 2) - c*(e*f + d*g)*(2*p + 3) - 2*c*e*g*(p + 1)*x)*(a + b*x + c*x^2)^(p + 1))/(2*c^2*(p + 1)*(2*p + 3
)), x] + Dist[(b^2*e*g*(p + 2) - 2*a*c*e*g + c*(2*c*d*f - b*(e*f + d*g))*(2*p + 3))/(2*c^2*(2*p + 3)), Int[(a
+ b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b^2 - 4*a*c, 0] &&  !LeQ[p, -1]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^3}{(d+e x) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx &=\int \frac{x^3 (a e+c d x)}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx\\ &=-\frac{2 d x^2 \left (a e \left (c d^2-a e^2\right )+c d \left (c d^2-a e^2\right ) x\right )}{e \left (c d^2-a e^2\right )^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac{2 \int \frac{x \left (2 a c d^2 e \left (c d^2-a e^2\right )+\frac{1}{2} c d \left (c d^2-a e^2\right ) \left (5 c d^2-a e^2\right ) x\right )}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{c d e \left (c d^2-a e^2\right )^2}\\ &=-\frac{2 d x^2 \left (a e \left (c d^2-a e^2\right )+c d \left (c d^2-a e^2\right ) x\right )}{e \left (c d^2-a e^2\right )^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac{\left (\left (5 c d^2-3 a e^2\right ) \left (3 c d^2+a e^2\right )-2 c d e \left (5 c d^2-a e^2\right ) x\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 c^2 d^2 e^3 \left (c d^2-a e^2\right )}+\frac{\left (3 \left (5 c^2 d^4+2 a c d^2 e^2+a^2 e^4\right )\right ) \int \frac{1}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{8 c^2 d^2 e^3}\\ &=-\frac{2 d x^2 \left (a e \left (c d^2-a e^2\right )+c d \left (c d^2-a e^2\right ) x\right )}{e \left (c d^2-a e^2\right )^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac{\left (\left (5 c d^2-3 a e^2\right ) \left (3 c d^2+a e^2\right )-2 c d e \left (5 c d^2-a e^2\right ) x\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 c^2 d^2 e^3 \left (c d^2-a e^2\right )}+\frac{\left (3 \left (5 c^2 d^4+2 a c d^2 e^2+a^2 e^4\right )\right ) \operatorname{Subst}\left (\int \frac{1}{4 c d e-x^2} \, dx,x,\frac{c d^2+a e^2+2 c d e x}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{4 c^2 d^2 e^3}\\ &=-\frac{2 d x^2 \left (a e \left (c d^2-a e^2\right )+c d \left (c d^2-a e^2\right ) x\right )}{e \left (c d^2-a e^2\right )^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac{\left (\left (5 c d^2-3 a e^2\right ) \left (3 c d^2+a e^2\right )-2 c d e \left (5 c d^2-a e^2\right ) x\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 c^2 d^2 e^3 \left (c d^2-a e^2\right )}+\frac{3 \left (5 c^2 d^4+2 a c d^2 e^2+a^2 e^4\right ) \tanh ^{-1}\left (\frac{c d^2+a e^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{8 c^{5/2} d^{5/2} e^{7/2}}\\ \end{align*}

Mathematica [A]  time = 0.536852, size = 331, normalized size = 1.22 \[ \frac{c^{3/2} d^{3/2} \sqrt{e} \left (a^2 c d e^3 \left (4 d^2+5 d e x+e^2 x^2\right )+3 a^3 e^5 (d+e x)-a c^2 d^2 e \left (d^2 e x+15 d^3-4 d e^2 x^2+2 e^3 x^3\right )+c^3 d^4 x \left (-15 d^2-5 d e x+2 e^2 x^2\right )\right )+3 \sqrt{c d} \sqrt{c d^2-a e^2} \left (-a^2 c d^2 e^4-a^3 e^6-3 a c^2 d^4 e^2+5 c^3 d^6\right ) \sqrt{a e+c d x} \sqrt{\frac{c d (d+e x)}{c d^2-a e^2}} \sinh ^{-1}\left (\frac{\sqrt{c} \sqrt{d} \sqrt{e} \sqrt{a e+c d x}}{\sqrt{c d} \sqrt{c d^2-a e^2}}\right )}{4 c^{7/2} d^{7/2} e^{7/2} \left (c d^2-a e^2\right ) \sqrt{(d+e x) (a e+c d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^3/((d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(c^(3/2)*d^(3/2)*Sqrt[e]*(3*a^3*e^5*(d + e*x) + a^2*c*d*e^3*(4*d^2 + 5*d*e*x + e^2*x^2) + c^3*d^4*x*(-15*d^2 -
 5*d*e*x + 2*e^2*x^2) - a*c^2*d^2*e*(15*d^3 + d^2*e*x - 4*d*e^2*x^2 + 2*e^3*x^3)) + 3*Sqrt[c*d]*Sqrt[c*d^2 - a
*e^2]*(5*c^3*d^6 - 3*a*c^2*d^4*e^2 - a^2*c*d^2*e^4 - a^3*e^6)*Sqrt[a*e + c*d*x]*Sqrt[(c*d*(d + e*x))/(c*d^2 -
a*e^2)]*ArcSinh[(Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*e + c*d*x])/(Sqrt[c*d]*Sqrt[c*d^2 - a*e^2])])/(4*c^(7/2)*d^(7/
2)*e^(7/2)*(c*d^2 - a*e^2)*Sqrt[(a*e + c*d*x)*(d + e*x)])

________________________________________________________________________________________

Maple [A]  time = 0.06, size = 391, normalized size = 1.4 \begin{align*}{\frac{x}{2\,d{e}^{2}c}\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}}}-{\frac{3\,a}{4\,{c}^{2}{d}^{2}e}\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}}}-{\frac{7}{4\,{e}^{3}c}\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}}}+{\frac{3\,{a}^{2}e}{8\,{c}^{2}{d}^{2}}\ln \left ({ \left ({\frac{a{e}^{2}}{2}}+{\frac{c{d}^{2}}{2}}+cdex \right ){\frac{1}{\sqrt{dec}}}}+\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}} \right ){\frac{1}{\sqrt{dec}}}}+{\frac{3\,a}{4\,ce}\ln \left ({ \left ({\frac{a{e}^{2}}{2}}+{\frac{c{d}^{2}}{2}}+cdex \right ){\frac{1}{\sqrt{dec}}}}+\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}} \right ){\frac{1}{\sqrt{dec}}}}+{\frac{15\,{d}^{2}}{8\,{e}^{3}}\ln \left ({ \left ({\frac{a{e}^{2}}{2}}+{\frac{c{d}^{2}}{2}}+cdex \right ){\frac{1}{\sqrt{dec}}}}+\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}} \right ){\frac{1}{\sqrt{dec}}}}+2\,{\frac{{d}^{3}}{{e}^{4} \left ( a{e}^{2}-c{d}^{2} \right ) }\sqrt{cde \left ({\frac{d}{e}}+x \right ) ^{2}+ \left ( a{e}^{2}-c{d}^{2} \right ) \left ({\frac{d}{e}}+x \right ) } \left ({\frac{d}{e}}+x \right ) ^{-1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x)

[Out]

1/2/e^2*x/d/c*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)-3/4/e/d^2/c^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*a-
7/4/e^3/c*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+3/8*e/d^2/c^2*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)
+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(1/2)*a^2+3/4/e/c*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(
1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(1/2)*a+15/8*d^2/e^3*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d
*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(1/2)+2*d^3/e^4/(a*e^2-c*d^2)/(d/e+x)*(c*d*e*(d/e
+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 7.75561, size = 1530, normalized size = 5.65 \begin{align*} \left [\frac{3 \,{\left (5 \, c^{3} d^{7} - 3 \, a c^{2} d^{5} e^{2} - a^{2} c d^{3} e^{4} - a^{3} d e^{6} +{\left (5 \, c^{3} d^{6} e - 3 \, a c^{2} d^{4} e^{3} - a^{2} c d^{2} e^{5} - a^{3} e^{7}\right )} x\right )} \sqrt{c d e} \log \left (8 \, c^{2} d^{2} e^{2} x^{2} + c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4} + 4 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt{c d e} + 8 \,{\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right ) - 4 \,{\left (15 \, c^{3} d^{6} e - 4 \, a c^{2} d^{4} e^{3} - 3 \, a^{2} c d^{2} e^{5} - 2 \,{\left (c^{3} d^{4} e^{3} - a c^{2} d^{2} e^{5}\right )} x^{2} +{\left (5 \, c^{3} d^{5} e^{2} - 2 \, a c^{2} d^{3} e^{4} - 3 \, a^{2} c d e^{6}\right )} x\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}}{16 \,{\left (c^{4} d^{6} e^{4} - a c^{3} d^{4} e^{6} +{\left (c^{4} d^{5} e^{5} - a c^{3} d^{3} e^{7}\right )} x\right )}}, -\frac{3 \,{\left (5 \, c^{3} d^{7} - 3 \, a c^{2} d^{5} e^{2} - a^{2} c d^{3} e^{4} - a^{3} d e^{6} +{\left (5 \, c^{3} d^{6} e - 3 \, a c^{2} d^{4} e^{3} - a^{2} c d^{2} e^{5} - a^{3} e^{7}\right )} x\right )} \sqrt{-c d e} \arctan \left (\frac{\sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt{-c d e}}{2 \,{\left (c^{2} d^{2} e^{2} x^{2} + a c d^{2} e^{2} +{\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right )}}\right ) + 2 \,{\left (15 \, c^{3} d^{6} e - 4 \, a c^{2} d^{4} e^{3} - 3 \, a^{2} c d^{2} e^{5} - 2 \,{\left (c^{3} d^{4} e^{3} - a c^{2} d^{2} e^{5}\right )} x^{2} +{\left (5 \, c^{3} d^{5} e^{2} - 2 \, a c^{2} d^{3} e^{4} - 3 \, a^{2} c d e^{6}\right )} x\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}}{8 \,{\left (c^{4} d^{6} e^{4} - a c^{3} d^{4} e^{6} +{\left (c^{4} d^{5} e^{5} - a c^{3} d^{3} e^{7}\right )} x\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="fricas")

[Out]

[1/16*(3*(5*c^3*d^7 - 3*a*c^2*d^5*e^2 - a^2*c*d^3*e^4 - a^3*d*e^6 + (5*c^3*d^6*e - 3*a*c^2*d^4*e^3 - a^2*c*d^2
*e^5 - a^3*e^7)*x)*sqrt(c*d*e)*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 + 4*sqrt(c*d*e*x^2 +
a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(c*d*e) + 8*(c^2*d^3*e + a*c*d*e^3)*x) - 4*(15*c^3*
d^6*e - 4*a*c^2*d^4*e^3 - 3*a^2*c*d^2*e^5 - 2*(c^3*d^4*e^3 - a*c^2*d^2*e^5)*x^2 + (5*c^3*d^5*e^2 - 2*a*c^2*d^3
*e^4 - 3*a^2*c*d*e^6)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c^4*d^6*e^4 - a*c^3*d^4*e^6 + (c^4*d^5*
e^5 - a*c^3*d^3*e^7)*x), -1/8*(3*(5*c^3*d^7 - 3*a*c^2*d^5*e^2 - a^2*c*d^3*e^4 - a^3*d*e^6 + (5*c^3*d^6*e - 3*a
*c^2*d^4*e^3 - a^2*c*d^2*e^5 - a^3*e^7)*x)*sqrt(-c*d*e)*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)
*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-c*d*e)/(c^2*d^2*e^2*x^2 + a*c*d^2*e^2 + (c^2*d^3*e + a*c*d*e^3)*x)) + 2*(15
*c^3*d^6*e - 4*a*c^2*d^4*e^3 - 3*a^2*c*d^2*e^5 - 2*(c^3*d^4*e^3 - a*c^2*d^2*e^5)*x^2 + (5*c^3*d^5*e^2 - 2*a*c^
2*d^3*e^4 - 3*a^2*c*d*e^6)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c^4*d^6*e^4 - a*c^3*d^4*e^6 + (c^4
*d^5*e^5 - a*c^3*d^3*e^7)*x)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{3}}{\sqrt{\left (d + e x\right ) \left (a e + c d x\right )} \left (d + e x\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3/(e*x+d)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Integral(x**3/(sqrt((d + e*x)*(a*e + c*d*x))*(d + e*x)), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError